
PREMIS Event Service Documentation
Release 1.0

UNT Libraries

Aug 03, 2023

Contents

1 Overview 3
1.1 PREMIS Event Service . 3

2 Technical Overview 9
2.1 Events . 9
2.2 Agents . 10

3 Installation 13
3.1 Dependencies . 13
3.2 Important security warning . 13
3.3 Install . 13

4 Configuration 15
4.1 Mandatory Configuration . 15
4.2 Customizing the Controlled Vocabulary . 16

5 Administration 19
5.1 Manage User Accounts . 19
5.2 Create an Agent . 19

6 Using the Event Service 21
6.1 Events . 21
6.2 Agents . 22

7 API 23
7.1 Introduction . 23
7.2 API URL Structure . 24
7.3 Example . 25

8 Development 29
8.1 Project Structure . 29
8.2 Models . 30
8.3 Views . 30

i

ii

PREMIS Event Service Documentation, Release 1.0

Contents:

Contents 1

PREMIS Event Service Documentation, Release 1.0

2 Contents

CHAPTER 1

Overview

For a general overview of the PREMIS Event Service, please see the project README.rst file (included below for
convenience).

1.1 PREMIS Event Service

PREMIS Event Service is a Django application for managing PREMIS Events in a structured, centralized, and search-
able manner.

1.1.1 Purpose

The purpose of this application is to provide a straightforward way to send PREMIS-formatted events to a central
location to be stored and retrieved. In this fashion, it can serve as an event logger for any number of services that
happen to wish to use it. PREMIS is chosen as the underlying format for events due to its widespread use in the digital
libraries world.

1.1.2 Dependencies

• Python 3

• Django 4.2

• lxml (requires libxml2-dev to be installed on your system)

• pipenv

3

https://github.com/unt-libraries/django-premis-event-service/actions

PREMIS Event Service Documentation, Release 1.0

1.1.3 Documentation

Documentation, including installation instructions, can be viewed online at:

http://premis-event-service.readthedocs.org/

The documentation is also browsable locally from within the docs directory of this repository. You can read the
source files in plain text from the docs/source directory, or generate your own local copy of the HTML files by
doing the following:

1. Make sure Sphinx is installed (pip install sphinx)

2. cd docs

3. make html

4. Open index.html (generated in docs/build/html)

1.1.4 License

See LICENSE.

1.1.5 Acknowledgements

The Premis Event Service was developed at the UNT Libraries and has been worked on by a number of developers
over the years including

• Kurt Nordstrom

• Joey Liechty

• Lauren Ko

• Stephen Eisenhauer

• Mark Phillips

• Damon Kelley

• Reed Underwood

• Andromeda Yelton (MIT)

• Madhulika Bayyavarapu

• Gracie Flores-Hays

If you have questions about the project feel free to contact Mark Phillips at mark.phillips@unt.edu

1.1.6 Developing

There are two (supported) ways to develop the PREMIS event service Django app. One is natively using an SQLite
backend. The other is using a MySQL backend for storage inside a Docker container.

4 Chapter 1. Overview

http://premis-event-service.readthedocs.org/
mailto:mark.phillips@unt.edu

PREMIS Event Service Documentation, Release 1.0

Developing Natively Using SQLite

Clone the repository

$ git clone https://github.com/unt-libraries/django-premis-event-service.git # check
→˓the repo for the latest official release if you don't want the development version
→˓at HEAD on the master branch
$ cd django-premis-event-service

Install the requirements using pipenv

$ pipenv --python 3.9 # (to create the virtualenv)
$ pipenv install --dev
$ pipenv shell # (to enter the virtualenv)
$ exit # (to leave the virtualenv)

If you need to generate a requirements.txt file, you can do so with pipenv lock -r > requirements.txt.

Run the tests using tox

$ tox

Apply the migrations

$ python manage.py migrate

Start the development server

$ python manage.py runserver 9999

This will start the development server listening locally on port 9999. You may want to change the port number, passed
as the first argument to the runserver command.

View the web UI in a browser

Navigate to http://localhost:9999/event/ (or whatever port you chose) to see the UI of the app.

Developing Using Docker and MySQL as a Backend

Install Docker

On Debian-derived Linux distros, you can use apt-get to install. If you’re on a different OS, check the Docker site
for instructions.

1.1. PREMIS Event Service 5

PREMIS Event Service Documentation, Release 1.0

Install Docker Compose

$ pip install docker-compose

Alternatively, you may want to install docker-compose using your system’s package manager.

Clone the repository

$ git clone https://github.com/unt-libraries/django-premis-event-service.git # check
→˓the repo for the latest official release if you don't want the development version
→˓at HEAD on the master branch
$ cd django-premis-event-service

Starting the app

start the app
$ docker-compose up -d db app

If you make changes to the models, create and apply a migration
$ docker-compose run manage makemigrations
$ docker-compose run manage migrate

optional: add a superuser in order to login to the admin interface
$ docker-compose run manage createsuperuser

View the web UI in a browser

Navigate to http://localhost:8000/event/ to see the UI of the app. The port can be changed by editing
the docker-compose.yml file.

The code is in a volume that is shared between your workstation and the app container, which means any edits you
make on your workstation will also be reflected in the Docker container. No need to rebuild the container to pick up
changes in the code.

However, if the Pipfile.lock changes, it is important that you rebuild the app container for those packages to be installed.
This is something that could happen when switching between feature branches; when installing new dependencies
during development; or when pulling updates from the remote.

stop the app
$ docker-compose stop

remove the app container
$ docker-compose rm app

rebuild the app container
$ docker-compose build app # under some circumstances, you may need to use the --no-
→˓cache switch, e.g. upstream changes to packages the app requires

start the app
$ docker-compose up -d db app

6 Chapter 1. Overview

PREMIS Event Service Documentation, Release 1.0

Viewing the logs

$ docker-compose logs -f

Running the Tests

To run the tests via Tox, use this command. If you are using podman-compose, swap the word docker with podman
(see Developing with Podman and Podman-Compose below).

$ docker-compose run --rm test

Developing with Podman and Podman-Compose

Install or Enable Podman

Install Podman-Compose

$ sudo dnf install podman-compose

You will follow the same steps as above, starting with Clone the repository. For all of the docker steps, you
will have to replace the word docker with podman.

If you have SELinux, you may need to temporarily add :Z to the base volumes in the docker-compose.yml. It
will look like .:/app/:Z. You may also need to use sudo for your podman-compose commands.

1.1. PREMIS Event Service 7

PREMIS Event Service Documentation, Release 1.0

8 Chapter 1. Overview

CHAPTER 2

Technical Overview

• Events

• Agents

2.1 Events

A standard PREMIS event encoded as XML looks something like the following:

<?xml version="1.0"?>
<premis:event xmlns:premis="info:lc/xmlns/premis-v2">

<premis:eventIdentifier>
<premis:eventIdentifierType>

http://purl.org/net/untl/vocabularies/identifier-qualifiers/#UUID
</premis:eventIdentifierType>
<premis:eventIdentifierValue>

9e42cbd3cc3b4dfc888522036bbc4491
</premis:eventIdentifierValue>

</premis:eventIdentifier>
<premis:eventType>

http://purl.org/net/untl/vocabularies/preservationEvents/#fixityCheck
</premis:eventType>
<premis:eventDateTime>2017-05-13T14:14:55Z</premis:eventDateTime>
<premis:eventDetail>

There is no muse of philosophy, nor is there one of translation.
</premis:eventDetail>
<premis:eventOutcomeInformation>

<premis:eventOutcome>
http://purl.org/net/untl/vocabularies/eventOutcomes/#success

</premis:eventOutcome>
<premis:eventOutcomeDetail>

(continues on next page)

9

PREMIS Event Service Documentation, Release 1.0

(continued from previous page)

<premis:eventOutcomeDetailNote>
Total time for verification: 0:00:01.839590

</premis:eventOutcomeDetailNote>
</premis:eventOutcomeDetail>

</premis:eventOutcomeInformation>
<premis:linkingAgentIdentifier>

<premis:linkingAgentIdentifierType>
http://purl.org/net/untl/vocabularies/identifier-qualifiers/#URL

</premis:linkingAgentIdentifierType>
<premis:linkingAgentIdentifierValue>

http://localhost:8787/agent/codaMigrationVerification
</premis:linkingAgentIdentifierValue>

</premis:linkingAgentIdentifier>
<premis:linkingObjectIdentifier>

<premis:linkingObjectIdentifierType>
http://purl.org/net/untl/vocabularies/identifier-qualifiers/#ARK

</premis:linkingObjectIdentifierType>
<premis:linkingObjectIdentifierValue>

ark:/67531/coda10kx
</premis:linkingObjectIdentifierValue>
<premis:linkingObjectRole/>

</premis:linkingObjectIdentifier>
</premis:event>

This is a lot at first glance, but the pieces are more or less logical. The relevant things that a given PREMIS event
record keeps track of are the following:

• Event Identifier - This is a unique identifier assigned to every event when it is entered into the system. This is
what is used to reference given event.

• Event Type - This is an arbitrary value to categorize the kind of event we’re logging. Examples might include
fixity checking, virus scanning or replication.

• Event Time - This is a timestamp for when the event itself occurred.

• Event Added - This is a timestamp for when the event was logged.

• Event Outcome - This is the simple description of the outcome. Usually something like “pass” or “fail”.

• Outcome Details - A more detailed record of the outcome. Perhaps output from a secondary program might go
here.

• Agent - This is the identifier for the agent that initiated the event. An agent can be anything, from a person, to
an institution, to a program. The PREMIS event service will also allow you to track agent entries as well.

• Linked Objects - These are identifiers for relevant objects that the event is associated with. If your system uses
object identifiers, you could put those identifiers here when an event pertains to them.

It is important to note that most of the values that you use in a given PREMIS event record are arbitrary. You decide
on your own values and vocabularies, and use what makes sense to you. It doesn’t enforce any sort of constraints as
far as that goes. The service is responsible for indexing all PREMIS events sent to it and providing retrieval for them.
Basic retrieval is on a per-identifier basis, but it is plausible to assume that you may wish to request events based on
date added, agent used, event type, event outcome, or a combination of these factors.

2.2 Agents

The PREMIS metadata specification defines a separate spec for agents that looks like the following:

10 Chapter 2. Technical Overview

PREMIS Event Service Documentation, Release 1.0

<?xml version="1.0"?>
<premis:agent xmlns:premis="info:lc/xmlns/premis-v2">

<premis:agentIdentifier>
<premis:agentIdentifierType>

http://purl.org/net/untl/vocabularies/identifier-qualifiers/#URL
</premis:agentIdentifierType>
<premis:agentIdentifierValue>

http://localhost:8787/agent/codaMigrationVerification
</premis:agentIdentifierValue>

</premis:agentIdentifier>
<premis:agentName>

codaMigrationVerification
</premis:agentName>
<premis:agentType>softw</premis:agentType>

</premis:agent>

As you can see from the above example, the agent’s identifier above corresponds with the agent in the event ex-
ample. You are able to create and register agents through the administrative panel on the PREMIS service; see the
Administration section to learn how.

Note that there is no schematic relationship between Agent objects and Event objects in the application’s database
tables. Events may be linked to any Agent identifier and are not limited in any way to Agent items created in admin-
istrative interface.

2.2. Agents 11

PREMIS Event Service Documentation, Release 1.0

12 Chapter 2. Technical Overview

CHAPTER 3

Installation

The project’s README.rst file contains some basic installation instructions. We’ll elaborate a bit in this section.

• Dependencies

• Important security warning

• Install

3.1 Dependencies

• Python 3.9

• Django 4.2

• libxml2-dev libxslt-dev

• Django Admin - django.contrib.admin

3.2 Important security warning

This application does not attempt to authenticate requests or differentiate between clients in any way – even for write
and edit operations via the API. Do not simply expose the application to the public in your server configuration.
Instead, use a network firewall to whitelist the server to authorized clients, or use a web server configuration directive
(such as Apache’s <LimitExcept GET>) to set up who is allowed to POST/PUT/DELETE events.

3.3 Install

1. Install the package.

13

PREMIS Event Service Documentation, Release 1.0

$ pip install git+https://github.com/unt-libraries/django-premis-event-service
$ # check https://github.com/unt-libraries/django-premis-event-service/releases
→˓for the latest release

2. Add premis_event_service to your INSTALLED_APPS. Be sure to add django.contrib.admin
if it is not already present.

INSTALLED_APPS = (
'django.contrib.admin',
...
'premis_event_service',

)

4. Include the URLs.

urlpatterns = [
url(r'', include('premis_event_service.urls'))
...
url(r'^admin/', include(admin.site.urls)),

]

5. Migrate the database.

$ python manage.py migrate

6. Continue to Administration to begin setting up Agents.

14 Chapter 3. Installation

CHAPTER 4

Configuration

All configuration related to the PREMIS Event Service takes place inside your project’s settings.py file.

Note: Make sure you only make changes in your project’s settings.py, not the settings.py file inside the
premis_event_service app directory.

• Mandatory Configuration

• Customizing the Controlled Vocabulary

– Deciding on Controlled Vocabulary Design

– Configuring a Custom Controlled Vocabulary

4.1 Mandatory Configuration

1. Update your INSTALLED_APPS setting as follows:

INSTALLED_APPS = (
...
'django.contrib.humanize',
'premis_event_service',

)

2. Make sure you have a TEMPLATE_CONTEXT_PROCESSORS setting defined containing at least the entries
shown below:

TEMPLATE_CONTEXT_PROCESSORS = (
'django.contrib.auth.context_processors.auth',
'django.core.context_processors.debug',
'django.core.context_processors.i18n',
'django.core.context_processors.media',

(continues on next page)

15

PREMIS Event Service Documentation, Release 1.0

(continued from previous page)

'django.core.context_processors.request',
)

3. In your MIDDLEWARE setting, remove or comment out the CsrfViewMiddleware entry:

MIDDLEWARE = (
...
#'django.middleware.csrf.CsrfViewMiddleware',
...

)

4. Add a MAINTENANCE_MSG setting at the bottom of the file:

MAINTENANCE_MSG = '' # Message to show during maintenance

4.2 Customizing the Controlled Vocabulary

4.2.1 Deciding on Controlled Vocabulary Design

The Premis Event Service was designed to us a wide variety of or identifiers for values within PREMIS Event Objects.
That being said there are some best practices that can be suggested to new a implementer.

It is advantageous for someone implementing the Premis Event Service to make use of existing controlled vocabularies
whenever possible for some of the concepts that are used throughout the application. For example the Library of
Congress has added a number of Preservation Vocabulary entries to its Authorities and Vocabularies Service. Starting
with these identifiers for concepts such as “Fixity Check”, “Replication”, “Ingestion”, or “Migration” is a suggestion
unless there is a reason to deviate from these in a local implementation.

Additional concepts that are not covered by the Library of Congress Authorities and Vocabularies Service are those
for the outcome of an event, for example “Success” and “Failure”. The Premis Event Service has placeholders set
aside for these values that utilize the controlled vocabularies at the University of North Texas: http://purl.org/NET/
untl/vocabularies/

The Premis Event Service will work without fully fleshed out controlled vocabularies, and the authors have worked to
give examples with reasonable values which can be added to or modified to meet local needs.

4.2.2 Configuring a Custom Controlled Vocabulary

The Event Service makes no attempt to validate values given to it against any set of allowed values; it is up to your
policies and integrations to enforce consistency across the events you store.

However, you can change the choices that are shown in the “Search” interface by adding some statements like these to
your settings.py file:

EVENT_OUTCOME_CHOICES = (
('', 'None'),
('http://purl.org/net/untl/vocabularies/eventOutcomes/#success', 'Success'),
('http://purl.org/net/untl/vocabularies/eventOutcomes/#failure', 'Failure'),

)
EVENT_TYPE_CHOICES = (

('', 'None'),
('http://id.loc.gov/vocabulary/preservation/eventType/fix', 'Fixity Check'),
('http://id.loc.gov/vocabulary/preservation/eventType/rep', 'Replication'),

(continues on next page)

16 Chapter 4. Configuration

http://id.loc.gov/vocabulary/preservation.html
http://id.loc.gov/
http://purl.org/NET/untl/vocabularies/
http://purl.org/NET/untl/vocabularies/

PREMIS Event Service Documentation, Release 1.0

(continued from previous page)

('http://id.loc.gov/vocabulary/preservation/eventType/ing', 'Ingestion'),
('http://id.loc.gov/vocabulary/preservation/eventType/mig', 'Migration'),

)

4.2. Customizing the Controlled Vocabulary 17

PREMIS Event Service Documentation, Release 1.0

18 Chapter 4. Configuration

CHAPTER 5

Administration

This section outlines the initial work needed after installation in order to prepare your Event Service for use.

• Manage User Accounts

• Create an Agent

5.1 Manage User Accounts

To create an admin account, run python manage.py createsuperuser and follow the prompts.

To manage or create other user accounts, do the following:

1. Visit the Django admin interface (http://[host]/admin/) in a web browser.

2. Log in using your superuser account.

3. Click Users. This takes you to the list of Users.

4. Click the Add user button near the top-right corner of the page.

5. Fill and submit the form.

Keep in mind that any account needing the ability to also administer user accounts using the admin interface will need
to be given “superuser” status.

5.2 Create an Agent

Every event stored in the Event Service must be associated with an Agent. Agents merely represent entities that
produce events. In many cases these are software processes (e.g. a web application or a script), but an agent can also
be a person, an institution, or anything else.

19

PREMIS Event Service Documentation, Release 1.0

To create a new agent (or to manage existing ones), do the following:

1. Visit the Django admin interface (http://[host]/admin/) in a web browser.

2. Log in using your superuser account (if you haven’t already).

3. Click Agents. This takes you to the list of Agents, which will be empty at first.

4. Click the Add agent button near the top-right corner of the page.

5. Fill and submit the form.

Create as many agents as you have a need for.

20 Chapter 5. Administration

CHAPTER 6

Using the Event Service

There are two ways of using the PREMIS Event Service:

• using the web interface to view and manage events by hand

• using the APIs to create or query events from other software workflows

This document will cover how to use the web interface and admin site. For information about the APIs, refer to the
next section (API).

• Events

– Browse all Events

– View a single Event

– Search for Events

• Agents

– Browse all Agents

– View a single Agent

6.1 Events

6.1.1 Browse all Events

URL: http://[host]/event/

Human readable HTML listing of events.

21

PREMIS Event Service Documentation, Release 1.0

6.1.2 View a single Event

URL: http://[host]/event/[id]/

Human readable HTML listing of a single event. Contains links to other formats/representations of the event, such as
PREMIS XML.

6.1.3 Search for Events

URL: http://[host]/event/search/

Web interface for searching events. Events can be filtered by outcome, type, start/end dates, or Linked Object ID.

6.2 Agents

6.2.1 Browse all Agents

URL: http://[host]/agent/

Human readable HTML listing of agents.

6.2.2 View a single Agent

URL: http://[host]/agent/[id]/

Human readable HTML listing of a single agent. Contains links to other formats/representations of the agent, such as
PREMIS XML.

22 Chapter 6. Using the Event Service

CHAPTER 7

API

The bulk of event creation using the Event Service will probably take place via software as opposed to by hand. This
section explains the AtomPub API (Application Programming Interface) used for interacting with the Event Service
from your custom applications and scripts.

• Introduction

– PREMIS

– A Note on Dates

• API URL Structure

– /APP/

– /APP/event/

– /APP/event/<id>/

– /APP/agent/

– /APP/agent/<id>/

• Example

7.1 Introduction

The PREMIS Event Service uses REST to handle the message passing between client and server. To better provide a
standard set of conventions for this, we have elected to follow the AtomPub protocol for POSTing and GETing events
from the system. The base unit for AtomPub is the Atom “entry” tag, which is what gets sent back and forth. The
actual PREMIS metadata is embedded in the entry’s “content” tag. There is a lot more to AtomPub than that, but for
the purpose of this document, it is helpful to just view the Atom entry as an “envelope” for the PREMIS XML.

23

PREMIS Event Service Documentation, Release 1.0

7.1.1 PREMIS

The PREMIS Event Service makes every effort to conform to the PREMIS v.2 specification. Versions 2.* of the spec
are not backwards compatible with versions before the 2.0 milestone.

7.1.2 A Note on Dates

Unless otherwise noted, all datetimes mentioned below must be formatted as xsDateTime compliant strings. The
output of the datetime.isoformat method in Python is compatible.

7.2 API URL Structure

APIs for communicating with the Event Service programmatically are located under the /APP/ URL tree:

7.2.1 /APP/

AtomPub service document

The service document is an XML file that explains, to an AtomPub aware client, what services and URLs exist at this
site. It’s an integral part of the AtomPub specification, and allows for things like auto-discovery.

7.2.2 /APP/event/

AtomPub feed for event entries

Accepts parameters:

• start - This is the index of the first record that you want. . . it starts indexing at 1.

• count - This is the number of records that you want returned.

• start_date - This is a date (or partial date) in ISO8601 format that indicates the earliest record that you want.

• end_date - This is a date that indicates the latest record that you want.

• type - This is a string identifying a type identifier (or partial identifier) that you want to filter events by

• outcome - This is a string identifying an outcome identifier (partial matching is supported)

• link_object_id - This is an identifier that specifies that we want events pertaining to a particular object

• orderdir - This defaults to ‘ascending’. Specifying ‘descending’ will return the records in reverse order.

• orderby - This parameter specifies what field to order the records by. The valid fields are currently:
event_date_time (default), event_identifier, event_type, event_outcome

For the human-viewable feeds, the parameters are the same, except, instead of using a ‘start’ parameter, it uses a ‘page’
parameter, because of the way it paginates the output (see below).

Also serves as a POST point for new entries.

Issuing a ‘GET’ to this URL will return an Atom feed of entries that represent PREMIS events.

This is the basic form of aggregation that AtomPub uses. Built into the Atom feed are tags thatallow for easy pagi-
nation, so crawlers will be able to process received data in manageable chunks. Additionally, this URL will accept a
number of GET arguments, in order to filter the results that are returned.

24 Chapter 7. API

https://www.loc.gov/standards/premis/v2/premis-v2-3.xsd
https://www.w3.org/TR/xmlschema-2/#dateTime

PREMIS Event Service Documentation, Release 1.0

This is also the endpoint for adding new events to the system, in which case a PREMIS Event is sent within an Atom
entry in the form of an HTTP POST request.

7.2.3 /APP/event/<id>/

Permalink for Atom entry for a given event

This is the authoritative link for a given PREMIS Event entry, based upon the unique identifier that each event is
assigned when it is logged into the system. It returns the event record contained within an Atom entry.

7.2.4 /APP/agent/

AtomPub feed for agent entries

Issuing a ‘GET’ request here returns an AtomPub feed of PREMIS Agent records. Because there will be far less agents
than events in a given system, it is not known that we’ll build search logic into this URL.

According to the AtomPub spec, this would be where we’d allow adding new Agents via POST, but because there
are likely so few times that we’d need to add Agents, we would just as well leave this to be done through the admin
interface.

7.2.5 /APP/agent/<id>/

Permalink for Atom entry for a given agent

The authoritative link for a given PREMIS Agent entry, based on the agent’s unique id. Next are the URLs designed
for human consumption.

7.3 Example

The example below is a somewhat plausible one, using a fixity check event during a migration as a scenario:

1 <?xml version="1.0"?>
2 <premis:event xmlns:premis="info:lc/xmlns/premis-v2">
3 <premis:eventIdentifier>
4 <premis:eventIdentifierType>
5 http://purl.org/net/untl/vocabularies/identifier-qualifiers/#UUID
6 </premis:eventIdentifierType>
7 <premis:eventIdentifierValue>
8 9e42cbd3cc3b4dfc888522036bbc4491
9 </premis:eventIdentifierValue>

10 </premis:eventIdentifier>
11 <premis:eventType>
12 http://purl.org/net/untl/vocabularies/preservationEvents/#fixityCheck
13 </premis:eventType>
14 <premis:eventDateTime>2017-05-13T14:14:55Z</premis:eventDateTime>
15 <premis:eventDetail>
16 There is no muse of philosophy, nor is there one of translation.
17 </premis:eventDetail>
18 <premis:eventOutcomeInformation>
19 <premis:eventOutcome>
20 http://purl.org/net/untl/vocabularies/eventOutcomes/#success
21 </premis:eventOutcome>

(continues on next page)

7.3. Example 25

PREMIS Event Service Documentation, Release 1.0

(continued from previous page)

22 <premis:eventOutcomeDetail>
23 <premis:eventOutcomeDetailNote>
24 Total time for verification: 0:00:01.839590
25 </premis:eventOutcomeDetailNote>
26 </premis:eventOutcomeDetail>
27 </premis:eventOutcomeInformation>
28 <premis:linkingAgentIdentifier>
29 <premis:linkingAgentIdentifierType>
30 http://purl.org/net/untl/vocabularies/identifier-qualifiers/#URL
31 </premis:linkingAgentIdentifierType>
32 <premis:linkingAgentIdentifierValue>
33 http://localhost:8787/agent/codaMigrationVerification
34 </premis:linkingAgentIdentifierValue>
35 </premis:linkingAgentIdentifier>
36 <premis:linkingObjectIdentifier>
37 <premis:linkingObjectIdentifierType>
38 http://purl.org/net/untl/vocabularies/identifier-qualifiers/#ARK
39 </premis:linkingObjectIdentifierType>
40 <premis:linkingObjectIdentifierValue>
41 ark:/67531/coda10kx
42 </premis:linkingObjectIdentifierValue>
43 <premis:linkingObjectRole/>
44 </premis:linkingObjectIdentifier>
45 </premis:event>

As you can see, the values chosen for the tags in the PREMIS event XML are arbitrary, and it is the responsibility of
the user to select something that makes sense in the context of their organization. One thing to note is that the values
for the eventIdentifierType and eventIdentifierValue will be overwritten, because the Event Service
manages the event identifiers, and assigns new ones upon ingest.

Now, in order to send the event to the Event Service, it must be wrapped in an Atom entry, so the following Atom
wrapper XML tree is created:

1 <entry xmlns="http://www.w3.org/2005/Atom">
2 <title>9e42cbd3cc3b4dfc888522036bbc4491</title>
3 <id>http://localhost:9999/APP/event/9e42cbd3cc3b4dfc888522036bbc4491/</id>
4 <updated>2017-05-13T14:14:55Z</updated>
5 <author>
6 <name>Object Verification Script</name>
7 </author>
8 <content type="application/xml">
9 <premis:event xmlns:premis="info:lc/xmlns/premis-v2">

10 ...
11 </premis:event>
12 </content>
13 </entry>

(With the previously-generated PREMIS XML going inside of the “content” tag.)

Now that the entry is generated and wrapped in a valid Atom document, it is ready for upload. In order to do this, we
POST the Atom XML to the /APP/event/ URL.

When the Event Service receives the POST, it reads the content and parses the XML. If it finds a valid XML PREMIS
event document, it will assign the event an identifier, index the values and save them, and then generate a return
document, also wrapped in an Atom entry. It will look something like:

26 Chapter 7. API

PREMIS Event Service Documentation, Release 1.0

1 <?xml version="1.0"?>
2 <entry xmlns="http://www.w3.org/2005/Atom">
3 <title>9e42cbd3cc3b4dfc888522036bbc4491</title>
4 <id>http://localhost:8000/APP/event/9e42cbd3cc3b4dfc888522036bbc4492/</id>
5 <updated>2017-03-27T09:15:31.382106-05:00</updated>
6 <content type="application/xml">
7 <premis:event xmlns:premis="info:lc/xmlns/premis-v2">
8 <premis:eventIdentifier>
9 <premis:eventIdentifierType>

10 http://purl.org/net/untl/vocabularies/identifier-qualifiers/#UUID
11 </premis:eventIdentifierType>
12 <premis:eventIdentifierValue>
13 9e42cbd3cc3b4dfc888522036bbc4491
14 </premis:eventIdentifierValue>
15 </premis:eventIdentifier>
16 <premis:eventType>
17 http://purl.org/net/untl/vocabularies/preservationEvents/#fixityCheck
18 </premis:eventType>
19 <premis:eventDateTime>
20 2017-05-13T09:14:55-05:00
21 </premis:eventDateTime>
22 <premis:eventDetail>
23 There is no muse of philosophy, nor is there one of translation.
24 </premis:eventDetail>
25 <premis:eventOutcomeInformation>
26 <premis:eventOutcome>
27 http://purl.org/net/untl/vocabularies/eventOutcomes/#success
28 </premis:eventOutcome>
29 <premis:eventOutcomeDetail>
30 <premis:eventOutcomeDetailNote>
31 Total time for verification: 0:00:01.839590
32 </premis:eventOutcomeDetailNote>
33 </premis:eventOutcomeDetail>
34 </premis:eventOutcomeInformation>
35 <premis:linkingAgentIdentifier>
36 <premis:linkingAgentIdentifierType>
37 http://purl.org/net/untl/vocabularies/identifier-qualifiers/#URL
38 </premis:linkingAgentIdentifierType>
39 <premis:linkingAgentIdentifierValue>
40 http://localhost:8787/agent/codaMigrationVerification
41 </premis:linkingAgentIdentifierValue>
42 </premis:linkingAgentIdentifier>
43 <premis:linkingObjectIdentifier>
44 <premis:linkingObjectIdentifierType>
45 http://purl.org/net/untl/vocabularies/identifier-qualifiers/#ARK
46 </premis:linkingObjectIdentifierType>
47 <premis:linkingObjectIdentifierValue>
48 ark:/67531/coda10kx
49 </premis:linkingObjectIdentifierValue>
50 <premis:linkingObjectRole/>
51 </premis:linkingObjectIdentifier>
52 </premis:event>
53 </content>
54 </entry>

If the POST is successful, the updated record will be returned, along with a status of 201. If the status is something
else, there was an error, and the event cannot be considered to have been reliably recorded.

7.3. Example 27

PREMIS Event Service Documentation, Release 1.0

Later, when we (or, perhaps, another script) wish to review the event to find out what went wrong
with the file validation, we would access it by sending an HTTP GET request to /APP/event/
9e42cbd3cc3b4dfc888522036bbc4491, which would return an Atom entry containing the final event record,
which we could then analyze and use for whatever purposes desired.

28 Chapter 7. API

CHAPTER 8

Development

Here, you will find some information helpful if you plan on developing upon or making changes to the Event Service
source code itself.

8.1 Project Structure

The PREMIS Event Service is structured as a common Python project, providing a Python package named
premis_event_service which is a Django app:

premis_event_service/
admin.py ## Customizes the Django admin interface
forms.py ## Form definitions and validation code
__init__.py ## Makes this directory a Python package
migrations ## Django database migrations

0001_initial.py
0002_add_event_ordinal.py
__init__.py

models.py ## Data models, using Django ORM
presentation.py ## Business logic
settings.py ## App-specific settings
templates

premis_event_service
agent.html
base.html
event.html
recent_event_list.html
search.html

urls.py ## App-specific url patterns/routes
views.py ## Route handlers which generate human- and machine-readable

→˓views

If you’re not sure where to look for something, urls.py is usually the best place to start. There you’ll find a list of every
URL pattern handled by the application, along with its corresponding view (found in views.py) and arguments.

29

PREMIS Event Service Documentation, Release 1.0

8.2 Models

Models define the data objects Django keeps in its database. The PREMIS Event Service defines these three:

• Event - Represents an event.

• Agent - Represents an agent you’ve defined using the Django admin interface.

• LinkObject - Contains an identifier for an object in your preservation workflow. Exists for the purpose of relating
multiple events that pertain to the same object.

See premis_event_service/models.py for the full definitions to these models.

8.3 Views

View are functions (or sometimes classes) that Django calls upon to generate the result of a request. Usually this just
means rendering some HTML from a template and serving it, but sometimes this involves form processing and API
interactions as well. Django decides which view to run based on what’s defined in urls.py.

See premis_event_service/views.py for the full source code to all the views provided by the Event Service.

30 Chapter 8. Development

	Overview
	PREMIS Event Service

	Technical Overview
	Events
	Agents

	Installation
	Dependencies
	Important security warning
	Install

	Configuration
	Mandatory Configuration
	Customizing the Controlled Vocabulary

	Administration
	Manage User Accounts
	Create an Agent

	Using the Event Service
	Events
	Agents

	API
	Introduction
	API URL Structure
	Example

	Development
	Project Structure
	Models
	Views

